Feature Selection for Chemical Sensor Arrays Using Mutual Information
نویسندگان
چکیده
منابع مشابه
Feature Selection for Chemical Sensor Arrays Using Mutual Information
We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maxi...
متن کاملFeature selection using Joint Mutual Information Maximisation
Feature selection is used in many application areas relevant to expert and intelligent systems, such as data mining and machine learning, image processing, anomaly detection, bioinformatics and natural language processing. Feature selection based on information theory is a popular approach due its computational efficiency, scalability in terms of the dataset dimensionality, and independence fro...
متن کاملForward feature selection using Residual Mutual Information
In this paper, we propose a hybrid filter/wrapper approach for fast feature selection using the Residual Mutual Information (RMI) between the function approximator output and the remaining features as selection criterion. This approach can handle redundancies in the data as well as the bias of the employed learning machine while keeping the number of required training and evaluation procedures ...
متن کاملQuadratic Mutual Information Feature Selection
We propose a novel feature selection method based on quadratic mutual information which has its roots in Cauchy–Schwarz divergence and Renyi entropy. The method uses the direct estimation of quadratic mutual information from data samples using Gaussian kernel functions, and can detect second order non-linear relations. Its main advantages are: (i) unified analysis of discrete and continuous dat...
متن کاملA new algorithm for EEG feature selection using mutual information
An EEG feature selection technique for the purpose of classification is developed. The technique selects those features that have maximum mutual information with the specified classes of interest (two classes in this case). Obviously, the simplest way is to consider all possible feature subsets (M out of N). However, even with a small number of features, this procedure is computationally imposs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0089840